
Streaming self-scaling histograms
with stability and optimality guarantees
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Abstract. Histograms provide discrete efficient representation of con-
tinuous data and can be constrained to fit various purposes. We provide
the first offline sub-quadratic algorithm which applies to any sub-additive
histogram cost functions. Sub-additive cost functions includes in partic-
ular all the `p norms. This algorithm outputs a histogram with at most
2m buckets and cost at most (1 + ε) the optimal cost achievable with
m buckets. Then we show how to adapt our algorithm in a streaming
context but restricted for a certain cost function that bounds the max-
imum error for one-dimensional aggregate range queries. An advantage
of our approach is that is only uses O(m) space and O(log(m)) per
item processing time, m being the number of buckets, independent from
N the number of values processed. We also prove that the histogram
outputs of our streaming algorithm are very stable. While reading the
streams, the output histogram undergoes at most O(m log(N)) bound-
ary displacements. To our knowledge, this concept of stability has never
been studied for streaming histograms. Stability implies that extra prop-
erties associated to the buckets don’t have to be reconstructed too often,
strengthening their quality and accuracy. Our empirical evaluations con-
firm the good behavior of our streaming algorithm in practice.

1 Introduction

Histograms provide discrete efficient representation of continuous data. Over
the last decades, they have been mainly used for cost-based query optimization
[11,12,22] and for approximate query answering [6, 15,20,21].

The problem of central interest in approximating distributions with his-
tograms can be stated as follow: “For a given number m of buckets, how should
the boundaries be chosen in order to obtain the most accurate histogram for a
particular task?”. Note that the dual problem “For a given level of accuracy
and for a particular task, how many buckets are needed?” has also been studied
in [13,19], but little has been done in this perspective. In addition, we will focus
in this paper in computing such optimal or near-optimal histograms in a stream-
ing context (see [2, 18] for recent surveys of data streams and applications).
? Work by the second author was performed while doing summer research at Poly-

technic University, on leave from École normale supérieure, Paris, France.
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Notation and cost functions. Let V = (v1, v2, ..., vN ) ∈ RN be a set of
real values, supposed to model a numerical attribute in a database, or a value
arriving on a data stream. Under data stream context, we will assume N very
large. See the excellent survey [18] for algorithms to compute various quantities of
a stream (e.g., `p norms, quantiles, etc.) under streaming models. A histogram
H is a collection of buckets, designed by B in the following. Each bucket is
characterized by its length, the distance between the bucket boundaries noted
l(B) and its weight, the number of values contained by the bucket noted w(B).

A common way of defining the quality of a histogram is to provide a cost func-
tion c that associates a cost to each bucket. The quality of the overall histogram
H is then measured by the total cost c(H) =

∑
c(Bi). The optimal histogram

for V with m buckets, designed by Hopt
m , is the histogram that minimizes the

total cost.
The squared bucket count cost function is defined by ccount(B) = w(B)2. The

total cost c(H) is clearly minimized when all the buckets have the same weight.
The more complicated cost functions considered in the literature are the intra-
bucket dispersion c1(B) =

∑
v∈B |v − AVG[B]| and the intra-bucket variance

c2(B) =
∑

v∈B(v −AVG[B])2. Histograms that minimize the total intra-bucket
variance C2 are often called V-optimal histograms. The rangesum histogram
quality criterion is defined as the expected value of |V[`, r) − H[`, r)|2 over all
half-open query intervals [`, r) is also considered in [20], but this criterion does
not quite fit into the simple framework presented here. All these cost functions
verify the simple following property.

Definition 1 (Sub-additivity). If c is a cost function, we will say that c is
sub-additive if, for all B1, B2 and B buckets such that B1 ∩ B2 = ∅ and (B1 ∪
B2) ⊂ B then we have c(B1) + c(B2) ≤ c(B).

In this paper, we also have a particular interest for a very simple cost function,
the freedom cost function cfreedom(B) = l(B)w(B). It is sub-additive and was
introduced by Greenwald in [7] under the name of the available error along
with the EquiError algorithm. It admits a very simple explanation in terms
of mechanics: assuming the elements v are particles free to take any value in
B (in the absence of any information about the distribution of particles in a
bucket), then cfreedom(B) represents the momentum, or quantity of motion, of
all the particles v ∈ B. A more geometric insight of the freedom cost function in
given in [7]. When looking at the cumulative distribution function (CDF) of V,
the bucket appears as rectangular constraints of dimension l(B) × w(B) fitted
on the curve, and all that is know is that the CDF goes inside those rectangles.
Minimizing the freedom therefore minimizes the area the CDF curve can lie in,
or equivalently the uncertainty on the area below the curve.

Freedom is also the most natural bound on range query errors: if we use
a histogram to answer range queries and know nothing else about the buckets
other than their bounds, width, and weight, then the maximum error to answer
a query whose endpoints fall into two buckets Bleft and Bright is given exactly
by cfreedom(Bleft) + cfreedom(Bright). Thus the freedom cost of a histogram is
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the best criteria to minimize the maximum range query error, and is also an
upper bound on the total intra-bucket dispersion c1.

Our results. We introduce Echap a simple offline algorithm, which applies to
all sub-additive cost functions. Echap outputs a histogram with at most 2m
buckets, and costs at most (1 + ε) the optimal cost achievable with m buckets3.
To our knowledge, Echap is the first algorithm with a sub-quadratic complexity
that provides guaranteed histograms for any sub-additive cost functions.

Then we show how to adapt our algorithm Sechap in a streaming context
with O(log(m)) processing time per incoming value in the case of the freedom
cost function. Unfortunately, we are not able to provide the same theoretical
guarantees for this streaming variant of Echap. But we prove that the algorithm
maintains an upper bound for the actual cost, even though we cannot show that
this bound is always within a constant factor of optimal. We nevertheless give
empirical evidence of the good behavior of Sechap in practice.

As with [9], our algorithms rely on a sketch used to construct the output
histogram. Instead of a wavelet, our sketch is simply a histogram with more
buckets. Our sketch improves the previously known results in using only a space
O(m) independent of N . It is also simple and practical. The histogram evolves
by mutations, where a mutation consist either of merging two adjacent buckets
or of splitting a bucket in two parts.

We also prove that the histogram evolution, while reading the stream, in-
volves only O(m log N) mutations in the worst case. To our knowledge, this is
the first result on histograms that constrains the “amount of change” of the
histograms when reading an additional value. In addition, empirical evaluations
indicate that convergence is even faster in practice. Since histograms could be
used to capture further properties of the data (maintaining some aggregate value
per bucket for example), stability implies that those properties won’t have to be
reconstructed too often, strengthening their accuracy and improving the overall
computational efficiency.

Related work on histograms. Histograms whose bucket boundaries are de-
termined by the input are called self-scaling (or also self-tuning). The equi-width
histograms, also called trivial histograms, are the simplest histograms where all
buckets have equal length. They are not self-scaling, and in practice they per-
form poorly [22]. The equi-depth histograms are defined as histograms where
all buckets have the same weight. The optimal equi-depth histogram could be
computed in O(N2) time with the P 2 algorithm as presented in [14]. Heuristic
algorithms are presented in [1, 3]. Data stream algorithms have recently been
given to maintain the quantiles of a distribution, an equivalent problem [4,8,16].
These solutions typically offer probabilistic or deterministic guarantees on the
approximate rank errors they compute of O(N/m) for a storage O(m log(N/m)).

The freedom cost function is introduced in [7] under the name of the available
error along with the EquiError algorithm. EquiError is very similar to

3 Some authors call such a histogram a (2, 1 + ε)-optimal histogram.
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Sechap. The main differences between both algorithms are where the bucket
is split, and how they maintain an estimate of the weights of each of the new
buckets. Sechap splits the buckets in half and keeps separate under- and over-
counts, trying to maintain a fixed ratio between the min and the max freedom.
Instead, EquiError attempts to maintain a uniform error per bucket, hence
the addition of a single element may force all the bucket boundaries to change
based on a cubic spline approximation of the CDF, and propagation of this may
force the algorithm to require O(m) processing time per item. In addition, the
paper [7] does not prove any of the error bounds we present here. However, it
makes very good points about why self-scaling algorithms (of which are all the
algorithms discussed above) are more desirable for capturing and representing
statistical distributions and offers valuable practical experience.

Recent results have been obtained for the `p optimal histograms, where the
sum for every bucket of a weighted moment is minimized (see the next section
for a formal definition). Typically the norm of interest are `1 (average absolute
error) [5] and `2 (root mean square error) [5,9,10,13,17]. A static dynamic pro-
gramming algorithm that compute the `2-optimal histogram is presented in [13],
it takes O(mN2) using O(mN) space. This dynamic programming algorithm
could easily be modified to return optimal histograms for any sub-additive cost
function with the same complexities. Recent work using wavelets has been done
in the streaming context in order to find proved ε-approximation of the opti-
mal histogram [5, 9, 10]. Those wavelet-based solutions typically consist of two
algorithms: a sketching algorithm that preprocess the input to some data struc-
ture (a certain number of wavelet coefficients) and a reconstruction algorithm
that performs some computation on that structure to output the final approxi-
mation (usually through a dynamic programming algorithm). Gilbert et al. [5]
present an algorithm that computes an ε-approximation for either the `1 or `2
norm with time to process a single update, the time to reconstruct the his-
togram and the size of the sketch all bounded by poly(m, ln(N), ln(‖V‖), 1/ε).
This result is improved in [9] with processing time O(1) per source value, a
sketch space of m(lnN ln ‖V‖ε)O(1) and a histogram reconstruction in time
O((m lnN ln ‖V‖/ε)O(1)).

Spline-based histograms, where the maximum absolute difference between a
value and the average of the values in its buckets in minimized, have also been
studied [22]. The dynamic programming algorithm proposed in [13] could be
easily adapted to find the optimal histogram in O(mN2), but to our knowledge,
no online algorithm has been proposed so far.

2 Offline histograms

In this section, we introduce our Echap algorithm to compute histograms with
optimality guarantees for any sub-additive cost function. These results provide
the basis for our streaming variant in the next section. First we provide some
results about equi-cost histograms. The main result is the Echap algorithm of
the second subsection.
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2.1 Near Equi-Cost Histograms

The main tool behind our analysis is the notion of equi-cost histogram: this is
a histogram Heq

m in which every bucket has the same cost C(Heq
m )/m. We can

relax this notion by introducing a δ-near equi-cost histogram, in which the most
expensive bucket BM costs at most (1 + δ)C(Bµ) where Bµ is the cheapest
bucket. As defined by, e.g., say [20], we say that a histogram is (α, β)-optimal if
it has at most αm buckets and cost βC(Hopt

m ).

Theorem 1. Let C be a sub-additive cost function, and k > 0 a parameter (not
necessarily integral). If Heq

d(k+1)me is the equi-cost histogram with d(k + 1)me
buckets, then Heq

d(k+1)me is (k +1, 1+ 1
k )-optimal. More generally, a δ-near equi-

cost histogram Hδeq
d(k+1)me with d(k + 1)me buckets is (k + 1, 1 + 1+δ

k−δ )-optimal.

Proof: Let us write Hδeq for short, and let Bµ and BM be the cheapest and
most expensive buckets (respectively) out of Hδeq. It suffices to prove the second
inequality, since the first follows with δ = 0.

At most m buckets of Hδeq may contain a boundary of Hopt
m (let’s call them

crossing buckets, and denote them by Hδeq
cross), the other buckets of Hδeq are

entirely contained inside those of Hopt (enclosed buckets, denoted by Hδeq
encl). The

cost of the crossing buckets is at most mC(BM ). The (near) equi-cost property
implies C(BM ) ≤ (1 + δ)C(Bµ). Since Hδeq has d(k + 1)me buckets, we have

C(Bµ) ≤ 1
d(k + 1)me

C(Hδeq) ≤ 1
(k + 1)m

C(Hδeq).

From these two inequalities, we get C(Hδeq
cross) ≤ 1+δ

k+1C(Hδeq). By the sub-
additivity of the cost function, the total cost of the enclosed buckets cannot
add up to more than C(Hopt

m ). Overall, we have

C(Hδeq) = C(Hδeq
cross) + C(Hδeq

encl) ≤
1 + δ

k + 1
C(Hδeq) + C(Hopt

m ).

The result on δ-near equi-cost histograms follows by simple algebra. �

Given ε > 0, and an algorithm to compute a δ-near equi-cost histogram Hδeq,
one may pick k = δ + 1+δ

ε = O(1/ε) to obtain a (O( 1
ε ), 1 + ε) approximations

for any ε > 0. Unfortunately, d(k + 1)me is quite a lot of buckets to obtain a
lower bound on the cost of the m-bucket histogram Hopt

m . We may resolve this
shortcoming by using the d(k + 1)me boundaries of Hδeq for constructing a near-
optimal histogram H?

2m with 2m buckets, using dynamic programming [10, 13].
The previous lemma implicitly proves that this yields a (2, 1+ε) scheme. Indeed,
combining all the buckets enclosed in a bucket of Hopt

m into a single bucket will
not increase the cost, by the sub-additivity property. Such a histogram will have
at most 2m buckets. Of course, we do not know Hopt but since there is such a
histogram, the best histogram H?

2m with 2m buckets will also match the same
cost.
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Corollary 1. Let C be a sub-additive cost function, and k > 0 a parameter (not
necessarily integral). If Hopt

m is an optimal histogram with m buckets, Hδeq =
Hδeq
d(k+1)me a δ-near equi-cost histogram with d(k + 1)me buckets, and H?

2m the
cheapest histogram with 2m buckets whose bucket boundaries are chosen among
those of Hδeq, then

C(H?
2m) ≤

(
1 +

1 + δ

k − δ

)
C(Hopt

m ).

Note that this approach would not work for reducing any histogram, but it works
specifically because we start with a (near) equi-cost histogram. Also, there is an
inherent limitation in the proof here above: we cannot obtain similar result for
H?

m instead of H?
2m. Indeed, H?

m will be resulting from the merge of buckets
crossing the boundaries of the optimal histogram. Our approach would require
a “reverse” inequality like C(B1) + C(B2) ≥ αC(B) (see the sub-additivity
definition), but this inequality is not true in general except for α = 0.

2.2 The Echap algorithm

The overall approach, at least in spirit, is thus to compute a δ-near equi-cost
histogram Hδeq

d(k+1)me and from it extract the best histogram H?
2m. Unfortunately,

we can’t quite do that, but we compute a histogram H with 2d(k + 1)me buckets
whose cost is similar to that of the equi-cost histogram.

Our algorithm, dubbed Echap (for Equi-Cost Histogram APproximation), is
simple and can be best explained in the non-streaming context. It only uses O(m)
space. Its pseudo-code is presented in Figure 1. The first step is to provide an
arbitrary initialization for H. Intuitively, each step of the algorithm will consist
in merging the two neighboring buckets with the smallest costs and in splitting
in two the bucket with the highest cost. The algorithm terminates when some
condition similar to the near-equi-cost condition is met. The algorithm works
for any sub-additive cost function, provided one knows how to split a bucket
into two buckets of costs at most half (by the sub-additivity property, this is
always possible). The proposed adaptation in the streaming context, presented
and analyzed in the next section, works only for the freedom cost function.

Theorem 2. If the cost function is sub-additive, then upon return from Echap,
the histogram H = H2d(k+1)me has a cost at most 4C(Heq

d(k+1)me) and the his-
togram H?

2m has a cost at most
(
1 + 2

k

)
C(Hopt

m ). Moreover, the algorithm per-
forms at most O(km log2(C(H init)/C(Hopt

m ))) iterations in line 4.

A straightforward consequence of Theorem 2 is that Echap requires only
O(N log m) as computation time to output a guaranteed histogram for any sub-
additive cost function, assuming we keep the buckets in a priority queue to speed
up processing of line 8 in logarithmic time and that bisection in line 5 can be done
in constant time.. This result improves the previously known O(mN2) required
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Algorithm: ECHAP(m, k, {vi}i)
Output A histogram H?

2m with 2m buckets such that C(H?
2m) ≤

`
1 + 2

k

´
C(Hopt

m )

1: Initialize H = H init
2d(k+1)me, with 2d(k + 1)me buckets, arbitrarily.

2: Let M such that c(BM ) = maxi{c(Bi)}.
3: Let µ such that c(Bµ ∪Bµ+1) = mini{c(Bi ∪Bi+1)}.
4: while c(BM ) > 2c(Bµ ∪Bµ+1) do
5: Let {BM1 , BM2} be a partition of BM

with c(BM1) ≤ c(BM )/2 and c(BM2) ≤ c(BM )/2.
6: Merge Bµ and Bµ+1.
7: Split BM in BM1 and BM2 .
8: Update M and µ as in lines 2 and 3.
9: end while

10: Return the best H?
2m constructed with the same boundaries as H by dynamic

programming [10,13].

Fig. 1. The Echap algorithm.

to compute the optimal histogram with a dynamic programming algorithm as
presented in [13]. Echap also improves the memory requirement with a O(m)
memory versus O(mN) for the dynamic programming algorithm.

Proof: First, let remark that a partition as defined at the line 5 of ECHAP exists
because the sub-additivity of the cost function. As in Theorem 1, let us write
Heq for short instead of Heq

d(k+1)me.
As soon as the property “maxi c(Bi) = c(BM ) ≤ 2 mini c(Bi∪Bi+1)” is true,

then the algorithm exits the while loop of line 4. We claim that mini c(Bi∪Bi+1)
is smaller than the cost of a bucket of Heq. Indeed, since H contains 2d(k + 1)me
buckets, the Dirichlet principle grants that at least two neighboring buckets of
H are entirely contained in the same bucket of Heq. The claim follows from the
sub-additivity of the cost function. In particular, for BM the most expensive
bucket of H, we have

c(BM ) ≤ 2
d(k + 1)me

C(Heq).

From this, it follows immediately that C(H) ≤ 2d(k + 1)mec(BM ) ≤ 4C(Heq).
As we did for Corollary 1, we can also consider the histogram H ′ with 2m

buckets obtained from H by merging all the buckets contained in a bucket of
Hopt

m . Those buckets have a total cost of at most C(Hopt
m ) by the sub-additivity

property. The m other crossing buckets have a cost of at most

mc(BM ) ≤ m
2

d(k + 1)me
C(Heq) ≤ 2

k + 1
C(Heq).

By Theorem 1, we have C(Heq) ≤ k+1
k C(Hopt

m ). In total, we obtain that C(H ′),
and hence C(H?

2m), is at most (1 + 2
k )C(Hopt

m ).
Let us now prove that the maximum number of Echap iterations in line 4

is at most 2d(k + 1)me log2(d(k + 1)meC(H init)/C(Heq)), which together with
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Theorem 1 will imply the theorem. Remember that by our claim, the bucket
created in step 6 has a cost c(Bµ ∪ Bµ+1) at most C(Heq)/d(k + 1)me. Note
that when the biggest bucket is split into two buckets at each step, the respective
costs of the created buckets are at most the half of the cost of the original bucket.
There are 2d(k + 1)me buckets, hence after 2d(k + 1)me iterations, we are sure
that the highest bucket cost (if still greater than C(Heq)/d(k + 1)me) has been
halved. The claim follows. �

In the case where the cost function is the freedom cost, the Echap algorithm
can be slightly changed in order to obtain a better bound on the total histogram
cost. Indeed, for any bucket B, a partition in the middle into B1 and B2 yields
s(B) ≥ 2(s(B1) + s(B2)). Therefore for any distribution, we have 2C(Hopt

2m ) ≤
C(Hopt

m ). So computing Echap(2m,k = 2,{vi}i) gives H?
4m with 4m buckets and

cost at most 2C(Hopt
2m ) ≤ C(Hopt

m ).

3 Online histograms

In this section, we adapt the Echap algorithm for the data stream context in
the case of the freedom cost function. The reason we do it for that function is
that in that case, the split in line 5 of Echap can be computed easily by splitting
a bucket in its spatial median.

For each bucket B, the Sechap algorithm (Streamed Equi-Cost Histogram
APproximation) records the boundaries of B and the width w(B). Since the data
is given in a data stream, when splitting a bucket we cannot be sure of the amount
of data that falls in each half. Hence we keep two bounds for the number of points
that fall into B, the number of guaranteed occurrences wg(B), and the number
of uncertain occurrences wu(B). We define the under-cost s−(B) of the bucket
B by s−(B) = l(B)wg(B), and the over-cost by s+(B) = l(B)(wg(B)+wu(B)).
The Sechap algorithm ensures that s−(B) ≤ s(B) ≤ s+(B).

The Sechap algorithm also requires two dictionaries TM and Tµ. The dic-
tionary TM contains all the buckets sorted according to s−, the under-cost.
It will be used to access to the bucket of highest cost. The other dictionary,
Tµ, contains all the neighboring buckets (Bi, Bi+1) ordered by the over-cost
s+(Bi ∪ Bi+1) = (l(Bi) + l(Bi+1))(wg(Bi) + wu(Bi) + wg(Bi+1) + wu(Bi+1)).
It will be used to access the neighboring buckets of lowest cost. The dictionar-
ies TM and Tµ can be seem as pessimistic estimation of the highest and lowest
bucket costs.

The details of the algorithm can be found in Figure 2. As with Echap the
memory space requirement is only O(m). We will now give two guarantees on
the behavior of the Sechap algorithm: one guarantee on the accuracy of the
cost associated to the histogram returned by Sechap, and one guarantee on the
evolution rate of the histogram.

Theorem 3 (SECHAP). The overcost associated to the histogram returned by
the Sechap algorithm is an upper bound for the actual cost. The total number
of split/merge operations when treating the first n values is less than m log2 n.



9

Algorithm: SECHAP(m, k, {vi}i)
1: Initialize H with the 2d(k + 1)me first values, with exactly one bucket per point.
2: Set wg(B)← 1, wu(B)← 0 for each bucket B.
3: Initialize TM and Tµ according to H.
4: for all incoming vi do
5: wg(B)← wg(B) + 1 for the bucket B with vi ∈ B
6: Update TM and Tµ, select BM = max(TM ) and Bµ = min(Tµ)
7: if s−(BM ) > 2s+(Bµ ∪Bµ+1) then
8: Merge Bµ and Bµ+1 into B∗

µ with
l(B∗

µ)← l(Bµ) + l(Bµ+1),
wg(B∗

µ)← wg(Bµ) + wg(Bµ+1),
wu(B∗

µ)← wu(Bµ) + wu(Bµ+1)
9: Split BM into BM1 and BM2 with

l(BM1)← l(BM2)← l(BM )/2
wg(BM1)← wg(BM2)← 0,
wu(BM1)← wu(BM2)← wg(BM ) + wu(BM )

10: Update TM and Tµ

11: end if
12: end for
13: Return H

Fig. 2. The Sechap algorithm.

Proof: The first part of the theorem can be proved by induction. Assume that
the overcost is always an upper bound for the real cost after treating n values.
When the n + 1th value is treated, if no split/merge occurs then it is clear
that the property remains true. If a split/merge occurs, then the value given
to the variables wg and wu (lines 8 and 9) guarantees that the overcosts of
those particular buckets remain upper bounds of the actual costs. Therefore the
property is true at the step n + 1.

In order to show the second part of the theorem, we need to remark that a
split operation on a bucket B requires s−(B) > 0 since s+ ≥ 0. Therefore, B
should verify wg(B) > wu(B). This implies that the wu(B) is at least multiplied
by two for each split. We also remark that the merge does not decrease wu(B).
Since wg(B) could not be increased by more than one for every incoming value,
it is clear that the total number of split/merge operations in the first n values
is less than m log2 n. �

4 Experimental results

4.1 Algorithms and datasets

The purpose of these experiments is first to answer a question left open in the pre-
vious section: how good in practice are the histograms provided by the Sechap
algorithm? This section provides empirical evaluations of two algorithms: the
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EquiError algorithm4 as presented in [7] and the Sechap algorithm intro-
duced here above. When the number of incoming values is less than 10,000 they
are compared against the optimal histogram algorithm as defined in [13], which
has a time complexity in O(mN2). (Unfortunately, it is not feasible to compute
the optimal cost with more than 10,000 values). Note also that since the output
histograms returned by EquiError or Sechap depend on the order of the in-
coming values, all the results presented in the following have been established on
the basis of 1000 random permutations of the two datasets for less than 10,000
values, and 10 random permutations for more than 10,000 values (for lack of
time) but will be redone with 1000 permutations for the final version..

In order to have reproducible experiments, we have chosen to present the
results obtained with two publicly available numerical datasets from the UCI
Knowledge Discovery in Databases Archive, as well as one synthetic dataset:

1. A randomly generated attribute with a normal distribution (Gaussian cen-
tered at 0 with standard deviation 1).

2. The variable Elevation from the Forest cover type database5. This dataset
has been chosen for being an example of a smooth (continuous) distribution.

3. The variable dst_bytes from the KDD Cup 99 database6 . This dataset has
been chosen for being an example of a peaky (discontinuous) distribution.

When we include the optimal cost using the algorithm of [13], the two datasets
are restricted to their 10000 first values. Otherwise, all three datasets have ap-
proximately 500,000 values.

4.2 Cost optimality study

The first series of results are relative to the costs of the histograms returned by
EquiError and SechapṪhose results are gathered in Tables 1 and 2 with m
as the number of buckets. The Sechap and EqErr indicate the corresponding
algorithm. In addition, next to the actual cost of the Sechap histogram, we
include the over-cost between brackets to indicate the goodness of the guarantee
returned by Theorem 3. The unit used to express the costs is such that the cost
of the optimal histogram with m buckets is always 1, hence the test was done
only on the first 10,000 values of each dataset.

The results include the dispersion cost function but note that neither EquiError
nor Sechap have been tuned for this cost function. The two algorithms have
been used as such. The motivation is to evaluate the empirical behavior of
EquiError or Sechap when used to minimize the dispersion cost function.

Both tables show that both EquiError and Sechap provide good ap-
proximations of the optimal histograms. In particular, Sechap is as good as
EquiError in case of a smooth distribution, but slightly outperformed by
4 The open source implementation of the Equi-Error algorithm available at http://

www-dsg.stanford.edu/MichaelGreenwald.html has been used for the experiments.
5 http://kdd.ics.uci.edu/databases/covertype/covertype.html
6 http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html

http://www-dsg.stanford.edu/MichaelGreenwald.html
http://www-dsg.stanford.edu/MichaelGreenwald.html
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Normal distribution

m Sechap EqErr

8 1.135 (1.157) 1.248
16 1.117 (1.148) 1.181
32 1.105 (1.147) 1.139
64 1.121 (1.182) 1.131
128 1.161 (1.255) 1.156
256 1.240 (1.384) 1.229
512 1.393 (1.623) 1.358

Forest cover type database

m Sechap EqErr

8 1.135 (1.157) 1.248
16 1.117 (1.148) 1.180
32 1.105 (1.148) 1.138
64 1.121 (1.183) 1.131
128 1.161 (1.255) 1.156
256 1.240 (1.385) 1.229
512 1.393 (1.623) 1.358

KDD Cup 99 database

m Sechap EqErr

8 1.135 (1.157) 1.248
16 1.117 (1.148) 1.181
32 1.105 (1.148) 1.139
64 1.121 (1.183) 1.131
128 1.161 (1.255) 1.156
256 1.240 (1.385) 1.229
512 1.393 (1.623) 1.358

Table 1. Cost results for the freedom cost function.

Normal distribution

m Sechap EqErr

8 1.041 (5.168) 1.041
16 1.062 (4.776) 1.051
32 1.067 (4.619) 1.067
64 1.074 (4.631) 1.067
128 1.086 (4.787) 1.093
256 1.129 (5.187) 1.124
512 1.200 (5.871) 1.205

Forest cover type database

m Sechap EqErr

8 1.014 (4.858) 0.966
16 1.053 (4.642) 1.024
32 1.066 (4.485) 1.107
64 1.068 (4.464) 1.032
128 1.067 (4.534) 1.027
256 1.086 (4.739) 1.045
512 1.130 (5.202) 1.144

KDD Cup 99 database

m Sechap EqErr

8 1.071 (5.697) 1.115
16 1.135 (6.207) 1.098
32 1.227 (7.508) 1.046
64 1.714 (12.221) 1.189
128 2.419 (19.218) 1.547
256 3.952 (34.599) 2.425
512 6.736 (64.458) 5.151

Table 2. Cost results for the dispersion cost function.

EquiError for a more peaky distribution, for both cost functions. Note also
that for a peaky distribution and the dispersion cost function, the optimality
ratio seems to diverge with a larger number of buckets. For all other cases, it
remains close to 1 although the divergence would show for many more buckets.

We also see that the overcost maintained by the algorithm is a good estimate
of the actual cost (which is unknown to the algorithm), for the freedom function.
The results for the dispersion cost functions are not as good, however, and there
we see that the overcost is a direct result of the larger number of mutations,
especially for the peaky example distribution of KDD Cup 99 (as shown in the
stability study.)

4.3 Sechap cost evolution study

Since we only process the first 10,000 values in the previous tables, we now look
at the evolution of the cost as more values are examined for the three data types.
In Figure 3, we display the cost for 64 buckets, the results for other numbers
of buckets are similar. We display both the actual cost of the histogram (which
can be computed from the original values) and the overcost maintained by the
algorithm. We notice a linear dependence (an almost perfect one for the smooth
distribution) on the cost per element. As in the previous experiment, we also
note that the overcost is very close to the cost all throughout, a little bit less so
for the peaky distributions.



12

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100  1000  10000  100000  1e+06  1e+07  1e+08  1e+09

Cover (actual cost)
Cover (overcost)
Kdd (actual cost)

Kdd (overcost)
Normal (actual cost)

Normal (overcost)

Fig. 3. Cost evolution results per element on the full databases streaming in
random order, as a function of the number of values seen so far.

4.4 Sechap stability study

The last series of results is relative to evolution rate of the Sechap histogram
while reading every value of the stream. The results are gathered in Figure ??.
The number of buckets is fixed to 64, and columns indicates the number of
elements processed, as given in the first line. For each subsequent line, the
(abridged) dataset name is followed by values to be read in column labeled
x as the number of split/merge that occurs between the step x and 2x. These
results were averaged over 10 permutations, for lack of time, but will be redone
with 1000 permutations for the final version.

Figure ?? shows that for all three distributions the convergence is very fast:
the number of split/merge decreases rapidly, faster than the bound established
in Theorem 3 in the previous section. Note that there are no split/merge until at
least m elements have been seen as these are used to initialize the histogram. The
number of split/merge is much higher for a peaky distribution, as expected, and
the convergence there is slower. Yet, the number of mutations of the histogram
is still very small in that case.

One could expect that the sorted distribution should yield the worse conver-
gence since the bucket boundaries would be constantly shifting to adjust to the
growing range (as would be the case with EquiError). In Figure 5, we display
the convergence of Sechap when the data arrives on the stream in sorted order.
In fact, the convergence is accelerated if the data is sorted! It can be explained
easily, of course, but we thought it worth pointing out. Note that KDD Cup 99
does not change at all until the last half of the data comes in, since at least half
the values are identical to the peak of the distribution.
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Fig. 4. Evolution results on the full databases streaming in random order.
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Fig. 5. Evolution results on the full databases streaming in sorted order.

5 Conclusion

The Echap algorithm introduced in this paper is, to our knowledge, the first
sub-quadratic algorithm that provides theoretical guaranties on the returned
histograms for all sub-additive cost functions. Its online variant Sechap is also
the first algorithm that provides theoretical guarantees on the mutation rate of
the returned histograms. Sechap guarantees that the number of buckets whose
boundaries are modified decreases exponentially according the number of incom-
ing values. Empirical evaluations indicate that Sechap is in general slightly out-
performed in quality by a previously introduced algorithm called EquiError.
Nevertheless, Sechap requires only a O(log(m)) per element processing time
for handling an histogram with m buckets, and so is still interesting in practi-
cal situations when one cannot afford the O(m) time per element required by
EquiError.
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