Statistical learning and distributed computing

Joannès Vermorel February 10th, 2006

Center of Bioinformatics, École des Mines

Summary

Overviews

- Statistical learning
- Distributed computing
- Software engineering
- A big picture of computational biology
- A synthetic approach
- PhD works
 - Algorithmic toolbox for distributed computing
 - Programming framework for distributed computing
 - Distributing statistical learning algorithms
- Conclusions Future works

Statistical learning overview

- Intuitive definition
 - Using a list of (input, output) items.
 - Build a function input \rightarrow output.
- Ex: given 1,000 proteins whose toxicology is known, can we predict the toxicology for the 1,000,000 remaining proteins ?
- Statistical learning aims to provide knowledge/tools
 - as general as possible.
 - as accurate as possible.

Distributed computing overview

- Intuitive definition
 - with N computers available.
 - perform a computation N times faster.
- Ex: no single machine (1 processor, 1 disk) can crawl the whole web and provide an efficient search engine.
- Distributed computing aims to provide knowledge/tools
 - as general as possible.
 - as scalable as possible.
- Perspective note: even cell-phones are likely to be distributed machines in 5 years.

Software engineering overview

- Intuitive definition
 - all tools that increase developer productivity.
 - all methods that increase developer productivity.
- Ex: programming languages are the consequence of the need for productivity.
- Software engineering aims to provide knowledge/tools
 - as general as possible.
 - as productive as possible.
- Perspective note: fuzzy topic, hard to quantify anything, but huge progresses in the last decade.

Big picture of Computational Biology

- The amount of biological data vastly exceed what a human expert can handle.
 - Ensembl Trace database (DNA sequences) is 22TB large.
- All future developments in biology will heavily rely on computational tools.
- Statistical learning tackles many major issues for biology and the pharmaceutical industry.

A synthetic approach

- The amount of biological data increases at a tremendous rate.
- Ex: Ensembl Trace database has been doubling in size every 10 months.
- Consequence: data becomes too large to be processed on a single machine.
- Memory and CPU hardware units do not match the data growth.
- \rightarrow Need for distributed computing.

A synthetic approach

• And software engineering?

- "Computational biologists" (at least in the CB) spends more than half of their time designing software.
- The "software" complexity of statistical learning methods increases quickly.
- Efficiently (and reliably) distributing an algorithm is a challenging task.
- Software engineering is needed to "scaleup" computational biology research.

PhD research works

- Algorithmic toolbox for distributed computing.
 - Data streams
 - Near neighbor search
 - Multi-armed bandit
- NGrid, a programming framework for distributed computing
 - project overview
 - distributed garbage collector
- Distributed machine learning algorithms
 - clustering
 - support vector machines

Algorithmic toolbox

- Idea: gathering the basic pieces usually required to distribute machine learning algorithms.
- Goals
 - (Distributed) computing performance.
 - Developer productivity.
- Requirements: generality.

Algorithmic toolbox Data Streams

- Data stream algorithms
 - Huge list of items.
 - Read one-item-at-a-time model.
 - Get a statistical measure over the whole list.
- Ex: AT&T, get the median TCP/IP packet size on a router carrying 100G packets a day.
- Classical data stream algorithms
 - Median / Quantile computations.
 - Many "online" versions of "offline" algorithms.
- My contribution
 - Online histograms (approximation of an online distribution) with Hervé Bronnimann (Polytechnic University).

Algorithmic toolbox Near Neighbor Search

- Near neighbor search algorithms
 - A set of data points.
 - A measure of similarity between the points.
 - How to get the neighbors of a query points?
- Ex: AT&T, near neighbors where used to detect fraud (using similarity between customer profiles).
- Classical solutions rely on the *triangular inequality* assumption.
- My contribution
 - Research report "Near neighbor search in non-metric space".
 - More precise performance measurements (rank based criterion).
 - The triangular inequality has virtually no impact on performance.
- Future works: improve performance based on those insights.

Algorithmic toolbox Multi-Armed Bandit

- Multi-Armed bandit
 - A set of levers.
 - Unknown rewards associated to each lever.
 - Maximize the sum of rewards in an iterative play.
- Ex: AT&T, automated customer care, dialog system was taking initiatives, the rewards were associated with customer feedback.
- Classical solutions were purely theoretical (no empirical evaluation).
- My contribution
 - Paper "Multi-Armed Bandit Algorithms and Empirical Evaluation", ECML'05, with Mehryar Mohry (New York University).
 - Large benchmark of the literature.
 - New algorithm POKER, perform better than known solutions.

NGrid Dist. computing framework

- A distributed computing framework is essentially a tradeoff between
 - Framework performance overhead.
 - Framework expressivity.
 - Development productivity.
- NGrid targets machine learning algorithms.
 - project started August 2005.
- Most similar projects
 - MapReduce (Google).
 - ProActive (Inria).

NGrid Dist. computing framework

NGrid is

- open source, LGPL, http://ngrid.sourceforge.net
- implemented in .Net / C#.
- NGrid key elements
 - just a "library", not a new language.
 - distributed objects.
 - distributed threads.
 - distributed garbage collection.

NGrid Dist. computing framework

- Distributed Garbage Collection (DGC)
 - Essential for developer productivity.
 - Critical for software reliability.
- Research paper (submitted)
 - "Sketch-based distributed garbage collection"
 - Insight: using data stream methods to reduce the bandwidth requirements for the DGC.
- Future directions: combining data streams and machine learning to perform smart load balancing with NGrid.
 - load balancing → generalized multi-armed bandit problems.

Distributed Statistical Learning

- Most recent part of my work
- Very preliminary results

Dist. stat. learning Clustering

- Clustering task (naïve yet most frequently used data mining operation)
 - Large dataset.
 - Measure of similarity between dataset items.
 - Find "clusters" (i.e. groups) of similar items within the dataset.
- Half a dozen of heuristics
 - based on simple machine learning.
 - improving the speed of the mono-threaded clustering algorithm.
- Distributed clustering
 - heavily rely on near neighbor search algorithms.
 - Distributed clustering algorithm fits perfectly the distributed object framework of NGrid.

Dist. Stat. Learning Support Vector Machines

- Support Vector Machines (SVM)
 - One of the most successful methods in machine learning.
 - Wide range of applications.
- SVM performance issues
 - memory requirements are supra-linear.
 - CPU requirements are supra-quadratic.
- Distributing SVM is a challenging task
 - Known SVM algorithms are deeply iterative.
- Future works: approximate the SVM algorithms
 - Enable distributed approach.
 - Highly probable: the solution will rely on clustering algorithm.

Conclusions Future works

- Mastering several domains is tough
 - Yet the situation is mostly inescapable to perform large scale statistical learning.
- Strong interactions between those domains
 - Each domain benefits from the advances of the others.
- Future works
 - Bringing NGrid at an operational level.
 - Implementing machine learning algorithms on top of NGrid.